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ABSTRACT

Empirical orthogonal function (EOF) and fuzzy clustering tools were applied to generate and validate

scenarios in operational ensemble prediction systems (EPSs) for U.S. East Coast winter storms. The National

Centers for Environmental Prediction (NCEP), European Centre for Medium-Range Weather Forecasts

(ECMWF), and Canadian Meteorological Centre (CMC) EPSs were validated in their ability to capture the

analysis scenarios for historical East Coast cyclone cases at lead times of 1–9 days. The ECMWFensemble has

the best performance for the medium- to extended-range forecasts. During this time frame, NCEP and CMC

did not perform as well, but a combination of the two models helps reduce the missing rate and alleviates the

underdispersion. All ensembles are underdispersed at all ranges, with combined ensembles being less un-

derdispersed than the individual EPSs. The number of outside-of-envelope cases increases with lead time.

For a majority of the cases beyond the short range, the verifying analysis does not lie within the ensemble

mean group of themultimodel ensemble or within the same direction indicated by any of the individualmodel

means, suggesting that all possible scenarios need to be taken into account. Using the EOF patterns to

validate the cyclone properties, the NCEPmodel tends to show less intensity and displacement biases during

1–3-day lead time, while the ECMWF model has the smallest biases during 4–6 days. Nevertheless, the

ECMWF forecast position tends to be biased toward the southwest of the other two models and the analysis.

1. Introduction

The U.S. East Coast and the adjacent ocean are

favorable for cool-season extratropical cyclone ac-

tivity (Miller 1946). Intense extratropical cyclones in

this region often have large socioeconomic impacts

on transportation (e.g., road, aviation, and marine),

human health, and property with their strong winds,

heavy precipitation, or storm surges (Mather et al.

1964; Davis and Dolan 1993; Novak et al. 2008; Chang

2013; Booth et al. 2015; Colle et al. 2015; Ma and

Chang 2017). Considering the high population density

of the eastern United States, accurate forecasts of

these storms are crucial to reduce their impact, in-

cluding both human and economic losses.

The predictability of extratropical cyclones is re-

lated to uncertainties in initial conditions (ICs) and

the forecast model characteristics (e.g., resolution,

physics). As a result, an ensemble approach has been

demonstrated to improve forecast skills in general

when compared with a single-model (deterministic)

approach (Tracton and Kalnay 1993; Molteni et al.

1996; Buizza 1997) by using a variety of ICs, physical

parameterizations, and/or models (Toth and Kalnay

1993; Molteni et al. 1996; Buizza et al. 1999). Several

recent studies have demonstrated the value of prob-

abilistic information for medium-range forecasts of se-

vere weather events, including the high-impact winter

storms (Hewson et al. 2014; Matsueda and Nakazawa

2015; Swinbank et al. 2016).

The characteristics of ensemble forecasts for cyclones

vary in different operational models depending on the

variations in ICs and model physics (Du et al. 1997;
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Stensrud et al. 1999; Froude et al. 2007; Charles and

Colle 2009; Froude 2009; Colle and Charles 2011;

Froude 2010). Froude et al. (2007) investigated the cy-

clone tracks in the 50-member European Centre for

Medium-Range Weather Forecasts (ECMWF) ensem-

ble prediction system (EPS) and 10-member National

Centers for Environmental Prediction (NCEP) EPSs

between 6 January and 5 April 2005 using an objective

feature tracking methodology to identify and track cy-

clones along the forecast trajectories. They found that

the ECMWF ensemble on average has a higher forecast

skill than the NCEP ensemble for both cyclone intensity

and position in the Northern Hemisphere (NH) while

the NCEP ensemble has smaller errors for cyclone in-

tensity in the Southern Hemisphere (SH). Both EPSs

indicate a higher level of forecast skill for cyclone po-

sition than intensity. The propagation speed of cyclones

is generally too slow in the ECMWF EPS. Both

ECMWF ensemble mean and the best ensemble mem-

ber had greater accuracy than the control forecast for

both the position and intensity of the cyclones, although

the ECMWF ensemble was underdispersed. Froude

(2010) further analyzed the predictions of extratropical

cyclones in the NH by nine EPSs from The Observing

System Research and Predictability Experiment

(THORPEX) Interactive Grand Global Ensemble

(TIGGE; Bougeault et al. 2010; Swinbank et al. 2016)

archive between 1 February and 31 July 2008. They

showed that the ECMWF ensemble has a higher

predictive skill for all aforementioned cyclone prop-

erties. However, the ECMWF model consistently

overpredicts cyclone intensity, although the bias is

small. The Japan Meteorological Agency (JMA), Met

Office (UKMO), NCEP, and CanadianMeteorological

Centre (CMC) have 1 day less skill for the position of

cyclones throughout the forecast lead times. The

NCEP model has larger errors for cyclone intensity

than for position. It was also found that cyclones in

all EPSs propagate too slowly.

Charles and Colle (2009) comprehensively verified

the strengths and positions of storms around North

America and the adjacent oceans within the NCEP

Short Range Ensemble Forecast (SREF; Du and

Tracton 2001; Du et al. 2003) system during 2004–07.

They found that the SREF has slightly more proba-

bilistic skill over the eastern United States and the

western Atlantic than the western potions of the do-

main for cyclone central pressure. The 15-member

SREF mean for both cyclone position and central

pressure on average has a smaller error than its own

five-member subgroups and the North American Me-

soscale Forecast System (NAM) model have in many

regions, but not the Global Forecast System (GFS)

model for many lead times. The SREF probabilities are

fairly reliable, although it is overconfident at higher

probabilities in all regions. Colle and Charles (2011)

showed that the cyclones for 72–120 h are too weak on

average by 2–3 hPa near the U.S. East Coast. These

cyclones move too fast in the GFS deterministic model

in the medium range while they are too slow and too far

west for the short range. Korfe and Colle (2017) eval-

uated the extratropical cyclones within the CMC,

ECMWF, and NCEP EPSs using a cyclone-tracking

scheme. They found that the NCEP EPS has compa-

rable forecast skill with the ECMWF EPS for lead

times less than 72 h while the ECMWF EPS has more

accuracy for cyclone intensity than the other two EPSs

for days 4–6. All three models have a significant slow

along-track bias for lead times 24–90 h, and they have a

left of track bias for lead times 120–144 h.

Long-term verification of cyclone forecasts in en-

semblemodels have so farmainly employed the tracking

and matching methods (e.g., Froude 2010; Charles and

Colle 2009; Korfe and Colle 2017), which only verify

cases in which several ensemble member cyclones can

be tracked andmatched to the observed cyclone. Hence,

these verifications exclude a significant fraction of cy-

clone forecasts especially in the medium range, and thus

the results for metrics such as the mean errors/absolute

errors, the anomaly correlation, and the rank histogram

are expected to be biased. Therefore, a complementary

method utilizing the forecasts from all ensemble mem-

bers is desirable for comparison.

In this work, we propose to evaluate the ensemble

forecasts of cyclones in a novel way by using the

scenario-based method (Zheng et al. 2017), which in-

cludes all ensemble members by using an empirical

orthogonal function (EOF) and fuzzy clustering meth-

odology. Keller et al. (2011) compared the forecast

scenarios associated with 10 extratropical transition

(ET) cases in the TIGGE data by applying fuzzy clus-

tering analysis and found that some EPSs are confined

to a few scenarios while others contribute to almost all

scenarios. The benefit of multimodel ensemble over a

single model has been demonstrated in some litera-

tures (e.g., Du et al. 2003; Zhou and Du 2010) for dif-

ferent weather phenomenon. Other studies (e.g., Harr

et al. 2008; Grams et al. 2011) have also shown that

fuzzy clustering is a suitable diagnostic method to de-

tect the physical processes associated with differ-

ent weather systems. Zheng et al. (2017) applied this

method to interpret scenarios in a set of ensemble

forecasts. They have shown that the EOF/fuzzy clus-

tering method can classify different scenarios associ-

ated with the uncertainty in extratropical cyclone

intensity and position. This work will utilize the
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EOF/fuzzy clustering method to assess the scenarios

within the CMC, ECMWF, and NCEP EPSs. The

statistics of analysis scenario will provide useful

guidance for operational forecasters to interpret

outputs from multiple models. It also initiates a

scenario-based study for model developers to di-

agnose the problems in forecasting cyclone scenarios

in operational models.

Overall, this study provides a recent snapshot of the

performance of the aforementioned three operational

ensemble models. To be more specific, this work will

address the following motivational questions:

d Whichmodel performs better in capturing the analysis

scenario in predicting winter storms using a multi-

model ensemble?
d What are the significant errors and bias in forecasting

the winter storms in different models for all observed

cyclone cases?
d What are the benefits of using multimodel combina-

tion and the multimodel ensemble mean?

2. Data and methodology

The ensemble data and techniques employed for this

paper are described in this section. This work involves

cyclone cases for calculating model statistics and bias/

errors; therefore, how the cases were selected will be

briefly presented.

a. The dataset

Ensemble data for this study were retrieved from the

TIGGE data archive. TIGGE was established since

2005 to support a range of THORPEX research activi-

ties by providing operational ensemble forecast data to

the international research community (Bougeault

et al. 2010; Swinbank et al. 2016). Forecast data from

10 participating centers are available with a lag of

48 h. We used data from three centers—NCEP, CMC,

and ECMWF—mainly because they are popular en-

sembles used by operational forecasters.

This study analyzes the ensemble forecasts in cool

seasons (November–March in the following year) from

2007/08 to 2014/15. The three EPSs comprise a large

set of ensemble forecasts with 90 members (50 from

ECMWF, 20 each from NCEP and CMC) in 12-h

forecast intervals and interpolated onto 18 latitude 3
18 longitude grid. Mean sea level pressure (MSLP) was

chosen to investigate cyclone intensity and tracks.

Note that the control forecasts are not included in the

multimodel ensemble for a fair comparison among

ensemble members. The NCEP operational analysis

data for MSLP are used to verify ensemble forecasts.

The ECMWF operational analysis was also investi-

gated as an alternate analysis data, and the results are

found to be very similar.

b. Winter storm case selection

To evaluate the performance of different operational

models in forecasting East Coast cyclones, we first

tracked the analysis cyclones across the verification re-

gions over the East Coast and western Atlantic (region

1, 328–458N, 798–628W). A bigger region (region 2, 308–
508N, 958–658W) was also investigated, including part

of the central United States and the East Coast. The

cyclone cases included only analyzed cyclones with the

minimum central pressure less than 1005hPa cross-

ing these two regions determined by the tracking scheme

developed by Hodges (1994, 1995, 1999). A minimum

pressure of 1005 hPa is chosen because it has been

shown that over two-thirds of the East Coast cyclones

have minimum pressure less than 1005 hPa (Hirsch

et al. 2001), and we are most interested in the signifi-

cant cyclones. To increase the sample size for model

evaluations, one or two verification times (VTs) were

included if they are within the verified region. We

chose one or two based on the following criteria: 1)

there must be at least one time step with minimum

pressure ,1005 hPa within the investigation domain;

2) if there is only one time step with minimum

pressure ,1005 hPa, this will be chosen as the unique

VT; 3) if there are two time steps with minimum

pressure,1005 hPa, both will be chosen as the VT; and

4) if there are more than two time steps with minimum

pressure ,1005 hPa, two time steps closest to the cen-

ter of the domain will be chosen as two VTs.

We evaluated the 1–9-day forecasts for the observed

cyclones. Due to the missing data for some cases in

the TIGGE archive, we have chosen 158–185 cases

(Table 1) for the scenario-based model evaluation calcu-

lations. Intensity distribution for each lead time is shown in

Fig. S1 in the online supplemental material. We have also

tested similar calculations using unique cases (102 and 135)

for 3- and 6-day forecasts by only selecting oneVT for each

cyclone track and the results are very consistent.

c. Evaluation using EOF/fuzzy clustering method

EOF analysis is a statistical method to condense the

information of a large dataset in order to examine its

variability (Hannachi et al. 2007; Wilks 2011). In terms

of ensemble forecast, there are regions of low and high

TABLE 1. The number of cyclone cases used for each forecast day.

Lead time (days) 1 2 3 4 5 6 7 8 9

Case number 164 176 180 158 170 185 170 168 178
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forecast uncertainty where low and high spread oc-

curs, respectively. The EOF method can summarize

the spread information or the dominant differences

between individual members while removing the re-

dundant information among them.

We use an EOF analysis across the ensemble members

at the VT to determine the dominant patterns of varia-

tions in ensemble MSLP forecasts over a verification

region. Following Zheng et al. (2017), the principal

components (PCs) corresponding to the leading twoEOF

patterns are used as a base to perform fuzzy clustering on

the ensemble MSLP forecasts over the verification re-

gion. Each member is assigned a weight that identifies its

relative strength of membership to each of the five clus-

ters depending on its distance from the cluster mean in

the PC phase space. A member is assigned to the cluster

with the largest weight. Note that Du and Zhou (2011)

also used the distance-based weight calculations for the

rank of the ensemble members. Zheng et al. (2017) has

discussed the application ofEOF/fuzzy clusteringmethod

to diagnose the forecast scenarios in an ensemble. More

details of this approach are described in the supplemental

material. This workwill focus on its application tomodel

evaluations. We will only present verification over re-

gion 1 as the results from two regions are consistent.

Figure 1 shows an example of the leading two EOF

patterns associated with an East Coast cyclone veri-

fied at 0000 UTC 30 December 2012. EOF1 shows a

monopole structure, representing the intensity uncertainty in

the three models while EOF2 shows a dipole, representing

the location uncertainty along the west-southwest to

east-northeast direction. Figure 2 shows the five-cluster

solution for the 90-member combined ensemble using

fuzzy clustering method.

After the analysis is available, the scenario closest to

the analysis can be used to verify the ensemble forecasts

(Zheng et al. 2017), hence we call this method ‘‘scenario-

based ensemble verification.’’ Since our cluster analysis

FIG. 1. (a) EnsemblemeanMSLP (contours, hPa) and the spread (shading, hPa); (b)MSLPEOF1 pattern (hPa);

and (c) MSLP EOF2 pattern (hPa). Valid time (VT): 0000 UTC 30 Dec 2012; initial time (IT): 0000 UTC 27

Dec 2012. The ensemble is based on a combined 90-member ensemble from NCEP, CMC, and ECMWF

models. The EOF1 and EOF2 pattern explained 62.1% and 22.0% of the total ensemble variance,

respectively.
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is based on EOF PC space, the analysis scenario is also

defined based on the projection (von Storch 1999) of the

analysis onto the leading EOFs. The analysis anomaly

A0 relative to the ensemble mean at the VT is projected

onto the leading two EOF patterns (E1 and E2) by using

the following equation:

a
i
5

cov(A0,E
i
)

var(E
i
)

, i5 1, 2, (1)

where ai stands for the projection coefficient of the anal-

ysis anomaly onto the EOF 1 or 2 patterns. The ‘‘cov’’ in

Eq. (1) means covariance between two scalars while the

‘‘var’’ represents the variance of a scalar. This is based on

the property that the EOF patterns are all orthogonal to

each other. Therefore, the verifying analysis at the VT is

translated onto the EOF PC1–PC2 phase space by adding

the pair of projection coefficient ai (i 5 1, 2) to the PC1–

PC2 scatterplot (e.g., purple plus in Fig. 2). The cluster

with the center having the shortest distance to the analysis

point is considered to represent the analysis more closely

than the remaining clusters and is defined as ‘‘Group

ANA’’ or the ‘‘analysis scenario.’’ Note that the analysis

point is not included in the clustering procedure to pre-

vent modifications of the cluster assignments.

Zheng et al. (2017) have shown that the analysis sce-

nario defined this way can represent the analyzed cy-

clone as well as its associated precipitation better than

the remaining scenarios, including the ensemble mean

scenario. The analysis scenario tends to have fewer errors

than other subgroups when verified by conventional met-

rics such as root-mean-square error and pattern correla-

tion coefficient, not only at the VT, but also over a period

of time (can be up to 3.5 days ormore) centered at theVT.

The selection of the analysis group is hence reliable to be

applied to model evaluations for cyclone forecasts.

d. Verification based on EOF PC metrics

When using the projection of the analysis onto the

PC space and the definition of the analysis group as a

verification tool in ensemble verification, an assump-

tion of this application is that the forecast errors do

project primarily onto the leading two EOF patterns.

To examine whether this holds true, the fraction of

squared error (error here is defined as ensemble mean

minus the analysis) explained by each EOF pattern is

calculated following Eq. (2):

fraction of squared error

5 g
i
3 cov(Err,E

i
)= �

i5M

i51

[g
i
3 cov(Err,E

i
)], (2)

where gi 5 cov(Err, Ei)/var(Ei, Ei), i5 1, 2, . . . ,M. The

M in Eq. (2) is the ensemble member size 90. The Err in

Eq. (2) is the forecast error pattern over the domain and

Ei is the ith EOF pattern. The fraction of squared error

is plotted in Fig. 3 based on day 3 and day 6 forecasts for

the 102 and 135 unique cyclone cases over region 1. For

day 3 forecasts, the median fraction of explained squared

error by the leading two EOF patterns is around 70%,

FIG. 2. Five-cluster solution based on EOF PC1 and PC2 metrics of 90-member ensem-

ble forecasts forMSLP. Purple plus sign is the position of projected analysis onEOF1 andEOF2.

Group 4 is the analysis group or ‘‘Group ANA.’’ The IT and VT are same with Fig. 1. Note that

the CMC model is not contributing to Group 4 so there is no red triangle on the plot.
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suggesting that over two thirds of the squared error can be

explained by the leading two EOF patterns. This value

reaches 81% for day 6, suggesting that most of the fore-

cast errors do project on the leading two patterns. There

are a few cases in which other EOFs (i.e., EOF 3 or 4)

explain a large fraction of the error. Unfortunately, we

find that there is no correlation between the amount of

error explained by a particular high-order EOF and the

amount of variance explained by that EOF, thus there is

no simple way to adaptively include additional EOFs into

the EOF/clustering method without a priori knowledge

of the analysis. Hence we have decided to focus on EOFs

1 and 2 in this study.

3. Results

a. Scenario-based statistics

1) OUTSIDE-OF-ENVELOPE (OOE) CASES

When analyzing the ensemble forecasts, there can

be cases in which the analysis is out of the multimodel

ensemble envelope. Figure 4 compares two cases with

FIG. 3. The squared error fraction explained by EOF1 to EOF10 patterns labeled by EOF1,

EOF2, . . . , EOF10 at the x axis, and the accumulated fraction explained by the leading

2 (EOF1–2), 3 (EOF1–3), 10 (EOF1–10), all 90 EOF patterns (EOF-all), and the residual

(Residual) for (a) day 3 forecast and (b) day 6 forecast. The red center line of each boxplot

shows the median value of the fraction. The blue box’s bounds show the interquartile range,

and the whiskers outside the bounds show the most extreme values not considered as outliers

within 1.5 times the interquartile range. The plus symbols are the outliers.
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FIG. 4. (a) Inside-of-envelope and (b) outside-of-envelope examples. Green, red, and blue

open circles represent members from the NCEP, CMC, and ECMWF models, respectively.

Black dashed represents the outside envelope of the multimodel ensemble. Magenta circle

with a plus sign denotes the analysis point. (a) 3-dayMSLP forecast initialized at 1200UTC 24

Jan 2015, and (b) 3-day MSLP forecast initialized at 1200 UTC 9 Dec 2008.
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the analysis inside and outside of the forecast envelope.

The analysis is located within the cluster on the PC1–

PC2 space for the case shown in Fig. 4a; in contrast,

the analysis is clearly out of the region enclosed by the

dashed line in Fig. 4b. Quantitatively, the outlier cases

or OOE cases are defined by the following criteria: 1)

the analysis is outside the boundary defined by the line

segments joining the vertices on the PC1–PC2 co-

ordinate, and 2) the distance between the analysis and

the closest member on the PC space is larger than

the average distance between any two members plus

1 standard deviation. Among the cases we examined,

there are 4 outlier cases for 3-day forecast, 16 for

6-day forecast, and 19 for 9-day forecast. For most of

the statistics discussed in section 3a(2), which are

dependent on the existence of an analysis group, we

have excluded the corresponding OOE cases for

forecast at each lead time considering that the outlier

cases do not really have an analysis group and those

cases should not be included in the related statistics.

However, the OOE cases are still included in calcu-

lating error/spread relation statistics (section 3b) since

these statistics do not directly depend on the existence of

an analysis group when evaluating the multimodel en-

semble to avoid biasing the results.

Given that the OOE cases are selected based on

PC1–PC2 space, it is important to confirm that the

case selection criteria make sense on the corresponding

physical atmospheric field. Figure 5a shows the spa-

ghetti plot for the OOE case shown in Fig. 4b. It is clear

that the analysis (black dashed line) is more south-

westward than most of the ensemble contours; except

for three members from the ECMWF model. How-

ever, even these closest three members are much

deeper and extend more west-northwest than the

analysis. Figure 5b depicts the corresponding group

means for the five-cluster solution, which clearly

shows that the analysis is quite distinct from the mean

of any of the five clusters. Therefore, the definition of

the OOE case for this case appears reasonable in the

physical space. We have visually examined the other

OOE cases determined based on the PC1–PC2 phase

space and confirmed that most of these cases are real

outliers based on the physical fields (not shown).

Figure 6 shows the fraction of OOE cases for each

lead time. During the lead times of 1–3 days, there are

only less than 3% of OOE cases, which might indicate

the multimodel ensemble is not underdispersed. The

fraction increases to 5% on day 5, reaches 8% for days

6 and 7, and further increases to;14% on days 8 and 9.

Overall, the OOE fraction increases with lead time in

medium to extended range, which could be associated

with an increasing error-spread underdispersion (see

discussions below) due to the decreasing spread or

growing model biases in the forecast or both.

2) HIT AND MISS RATE FOR EACH MODEL

The analysis group has been determined based on the

method discussed in section 2c. Note that theOOE cases

have been excluded from the calculation in this sub-

section.We have examined the hit rate and the miss rate

for each ensemble model and the multimodel. The

NCEP, CMC, and ECMWF have a total of 20, 20, and

50 ensemble members, respectively. The hit rate is a

percentage calculated by counting the number of each

model members in the analysis group and dividing it

by the total member number of eachmodel. The average

percentage is then calculated based on all the histori-

cal cyclone cases for each lead time. The miss rate is

FIG. 5. (a) Spaghetti plot of 1000-hPa contour line for the 3-day

forecasts initialized at 1200 UTC 9 Dec 2008: the purple contour

is the analysis; black contour is the multimodel ensemble mean

valid at 1200 UTC 12 Dec 2008; blue, red, and green represent

members from the ECMWF, CMC, and NCEP centers, re-

spectively. (b) Cluster mean plot for the 1000-hPa contour line

for the five clusters. Black solid is the multimodel ensemble

mean, and the purple contour is the analysis.
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calculated by counting the cases with zero members in

the analysis group and dividing it by the total case

number at each lead time. Figure 7a shows the average

hit rate of the ensemble members contributing to the

analysis group with respect to the total number of en-

semble members for NCEP, CMC, and ECMWF over

region 1 at lead times of 1–9 days. For short-range

forecast (days 1–2), there are around 26% of NCEP

members contributing to the analysis group. The

highest percentage of members among the three EPSs,

suggests that the NCEP is better in capturing the

analysis scenario in short-range forecast. In contrast,

the CMC model has the lowest percentage (;18%)

contributing to the analysis scenario among the three

models. The hit rate for the ECMWFmodel (;22%) is

significantly higher than the CMC model but slightly

less than the NCEP model. The combined CMC and

NCEP ensemble, often referred to as the North

American Ensemble Forecasting System (NAEFS),

has comparable percentage for hit rate with the

ECMWF model. Note that the conclusions for short-

range forecast are not changed by using different

operational analysis or including the control mem-

bers. For example, Table 2 shows the comparisons of

day 1 forecast verified by the ECMWF and NCEP

analyses, respectively. The NCEP EPS still has the

highest hit rate among the three EPSs when using the

ECMWF analysis with a slightly lower value than

using the NCEP analysis.

For medium-range forecast (days 3–6), the ECMWF

model has the highest percentage (;23%) of mem-

bers assigned to the analysis group, suggesting that

it does the best job in capturing the analysis scenario

in medium-range forecasts. The CMC model still has

the lowest percentage (;17%), but they are not

substantially lower than that for the NCEP model

(;17%–22%) except for day 3. The average per-

centage of the NCEP model drops 10% from day 2 to

day 6, suggesting its decreasing forecast skill in

the medium range in capturing the analysis scenario.

The NAEFS has the hit rate (;17%–19%) same with

the average of the NCEP and CMC models for each

forecast time.

For extended-range forecasts (days 7–9), the NCEP

model’s percentage increases by ;5% since day 6 and

becomes the highest one among the three models.

Meanwhile, the average percentage for the ECMWF

FIG. 6. The fraction of OOE cases to all observed cyclone cases for

each forecast lead time.

FIG. 7. (a) Average percentages (hit rate) of members in the

analysis group for each EPS and NAEFS at each lead time. The

vertical bars represent the 95% confidence level for each lead time.

(b) The percentage (miss rate) for each EPS and NAEFS that

misses the analysis group based on all cases at each lead time.
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model decreases by ;4% since day 6, but it is not

significantly lower than the NCEP model. The aver-

age percentage for the CMC model is still the lowest

one among the three, and it increases;2% from day 6

to day 9. On day 9, the CMC is not significantly dif-

ferent from the ECMWF model.

In some cases, one or two EPS(s) can have zero

number of members in the analysis group. In other

words, the EPS(s) fails to predict that particular

analysis scenario. We define a miss rate for each EPS

to represent the fraction of cases that the EPS fails to

predict the analysis scenario. Figure 7b shows the miss

rate for each EPS and the NAEFS. For short-range

forecasts (days 1–2), the NCEP model has the largest

missing rate (.12%) among the three models. The

ECMWF model miss rate is ;6% on day 1, but it re-

duces to ,3% on day 2. The CMC model also has a

miss rate value of ;6% on day 1, but it increases to

around 9% on day 2. During the medium-range (days

3–6), the NCEP and CMC models have compara-

ble missing rates (9%–14%), which are much larger

than that of the ECMWF model (;1%). For the ex-

tended range (days 7–9), the CMC has larger miss rate

(;8%–15%) than the NCEP model (;5%–10%) ex-

cept for day 9, while the ECMWF model still has the

smallest miss rate (,4%) among the three models.

One thing worth noting is that the NAEFS has com-

parable miss rate (;2%–3%) as the ECMWF model,

suggesting one benefit of combining the NCEP and

CMC ensembles is to significantly reduce the miss

cases in forecasting winter storms.

b. PC metric-based statistics

1) ERROR-SPREAD RELATION

One widely accepted measure of the utility of an EPS

is the relationship between its forecast accuracy and en-

semble spread. FromFig. 7, we have seen the capability of

different EPSs in capturing the analysis scenario. The

performance of an EPS is partly depending on if the EPS

could provide reliable forecast variability in simulating

East Coast storms’ forecast error. Here, the error-

spread relation in different individual models as well

as the multimodel is examined under the framework of

EOF PCs. Note that the OOE cases are included in

calculating the following statistics in this and the next

subsections to avoid biasing the results.

To investigate the dispersion characteristic of each

EPS, the RMSE is calculated from the differences be-

tween the magnitude of the projection of the individual

ensemble member onto an EOF of the multimodel en-

semble (i.e., the PC) and the magnitude of the analysis

onto that EOF. Then the spread is calculated by getting

the PC magnitude from each individual member, cal-

culating the distances relative to the ensemble mean and

taking the variance of these distances. The error–spread

ratio is calculated for each ensemble model and the

multimodel ensemble by dividing the RMSE by the

spread calculated from all cases. Figures 8a and 8b show

the error–spread ratios for the leading two EOF PCs

based on the observed cyclone cases at each lead

time for all three EPSs and the multimodel ensemble.

Figures 8c and 8d show the same results with the bias

removed, which we will discuss in next subsection. A

value of 1 represents the perfect relation. A model is

considered to be underdispersed if the ratio is greater

than 1; otherwise, it is overdispersed. For short-range

forecasts, both PC metrics suggest that the NCEP en-

semble is severely underdispersed (ratio.1.55), which

partly explains the larger miss rate that is shown in

Fig. 7b. The CMC model is the least underdispersed

among three individual EPSs on day 1 for both PCs.

The ECMWF model is less underdispersed than the

other two EPSs during days 2–3 for both PCs. For

medium-range forecasts, both the NCEP and CMC

models are more underdispersed than the ECMWF

model for PC1 metric (Fig. 8a). The NCEP ensemble

shows the highest underdispersion in PC2 (Fig. 8b)

while the other two show comparable underdispersion.

As for extended-range forecasts, all three models are

severely underdispersed in PC1 (Fig. 8a) with compa-

rable error-spread ratios. The ECMWF model exhibits

less underdispersion than the other two EPSs in PC2

(Fig. 8b).

For PC1 (Figs. 8a,b), the multimodel ensemble shows

the least underdispersion in short- to medium-range

forecasts for PC1 and in all lead times for PC2. The

underdispersion is increasing with lead time for both

PCs except for that it reaches a secondary peak on

day 4 for PC2. For the extended range, the error–

spread skills for all EPSs converge toward too low of a

spread, which is consistent with previous studies (e.g.,

TABLE 2.Hit rate andmiss rate of each ensemblemodel for day 1

forecast using the ECMWF analysis and the NCEP analysis for day

1 forecast, respectively. The control members from three EPSs are

also included when calculating the statistics. The values in paren-

theses for each hit rate are the corresponding standard error.

NCEP CMC ECMWF NAEFS

Hit rate (ECMWF

analysis)

26.1% 19.4% 20.9% 22.7%

(3.5%) (2.0%) (2.0%) (2.0%)

Hit rate (NCEP analysis) 27.3% 19.2% 20.3% 23.2%

(3.5%) (2.1%) (2.1%) (2.0%)

Miss rate (ECMWF

analysis)

15.1% 2.2% 4.3% 1.4%

Miss rate (NCEP analysis) 10.7% 2.2% 5.8% 0.72%
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Park et al. 2008). The NAEFS ensemble outperforms

the ECMWF in short- to extended-range forecasts for

PC1 and short- to medium-range forecasts for PC2.

Overall, the multimodel ensemble and the NAEFS

show a lower underdispersion for short- and medium-

range forecasts than all the individual model ensem-

bles, suggesting the benefit of combining different

EPSs in the short and medium range.

Since all three models experienced updates during

the time period we examined, the error-spread ratios

have been recalculated for two different periods: the

first half (2007/08–2010/11) and the second half pe-

riod (2011/12–2014/15), separately. Figure S2 shows

the error–spread ratio for the two periods. For the PC1

metric, the NCEP model becomes even more under-

dispersed in the second half period for day 1–2 lead

times. Beyond day 2 (5), the NCEP (ECMWF) EPS

shows improved error-spread relation in the second

period while the CMC becomes more underdispersed

beyond day 3. For PC2, all three models overall show

improvement on day 5–7 during the second period. The

NCEP model shows the largest improvement among

the three models for PC2.

To sum up, the NCEP ensemble is severely under-

dispersed in the short range for both PC metrics,

suggesting the NCEP ensemble may not have enough

ensemble dispersion. Connecting this with its higher

percentage of members contributing to the analysis

scenario (Fig. 7), a preliminary conclusion is that the

NCEP ensemble has smaller forecast errors but a very

narrow ensemble spread in the short range. In con-

trast, the CMC model is less underdispersed during

the short range. Since it has lower chance to be in-

cluded in the analysis group, the CMCmodel seems to

have large forecast errors but also a broad ensemble.

The ECMWF model has better error–spread rela-

tionship during the medium range, demonstrating its

superior performance in the medium range which is

FIG. 8. The ratio of forecast error to the spread of (a) PC1 and (b) PC2 at each lead time for each EPS. (c),(d) As in

(a) and (b), but the forecast bias at each lead time is removed when calculating the forecast errors.
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consistent with Fig. 7. Note that during the earlier

forecast time (1–3 days), the differences in the error–

spread skills for the three models are larger, which

could be due to their differences in generating en-

semble perturbations. The NCEP EPS mainly em-

ployed the ensemble transformation with rescaling

(ETR) to generate the initial perturbations during

the investigated period. Zhou et al. (2016) showed

that the spread from ETR is smaller than that from

the ensemble Kalman filter, which was employed in

the CMC ensemble. Lewis et al. (2017) found that the

NCEP ensemble is also strongly underdispersive for

the quantitative precipitation forecast.

The multimodel (NCEP 1 CMC 1 ECMWF) and

NAEFS ensemble shows overall smaller underdispersion

in short- to medium-range forecasts, suggesting the

benefit of combining different EPSs to provide more

forecast variability in the short- to medium-forecast

range. Above results are consistent with the findings

by Hagedorn et al. (2012) who analyzed forecasts of

850-hPa temperature, 2-m temperature, and 500-hPa

geopotential in the extratropics. Zhou and Du (2010)

also showed the benefit of combing multiple regional

models in fog prediction.

2) MODEL UNCERTAINTY AND BIAS BASED ON

EOF PATTERNS

One benefit of using EOF analysis is the orthogonal

property of the EOF patterns, which can also be used

to perform uncertainty and error decompositions/

combinations. To decompose the forecast uncertainty

for the multimodel ensembles, we first computed each

member’s anomaly with respect to the ensemble mean

for each case and repeated this calculation for all ca-

ses. An EOF analysis was then calculated on the

combined set of anomalies for all members and all

cases. The leading patterns represent the dominant

forecast uncertainties in all cyclone forecasts.

Figure 9 shows the dominant uncertainty patterns

in all ensemble members in forecasting the observed

cyclone cases from day 1 to day 6 forecasts. The leading

pattern (EOF1, Fig. 9) tends to have a monopole

structure at all forecast times, which is a bit northward

(westward for day 6) of the ensemble mean cyclone

(purple dot). This pattern suggests the main uncertainty

in forecasting East Coast storms is the intensity together

with a shift (;150–220 km) of the center in the north–

south direction except day 6. The variance explained

varies from 35.9% (for day 1) to 56.6% (for day 6). The

second pattern (EOF2, Fig. 10) is a dipole pattern

representing a southwest and northeast shift in cyclone

position. The explained forecast variance by the lead-

ing two EOF patterns increases from 53.8% for day 1 to

76.7% for day 6. Therefore, the leading two patterns

represent most of the forecast uncertainties.

The systematic errors on each EOF direction can also

be calculated. On the above EOF PC1–PC2 space, each

member occupies one point for one case. When the

analysis is projected onto the corresponding EOF1 and

2 patterns, it also occupies one point for each case. The

difference in the abscissa or the ordinate between each

member and the analysis reflects the relative error

for that member in EOF PC1 or PC2. By averaging

the differences between the members from one EPS

and the analysis, the systematic error associated

with EOF1/2 pattern corresponding to that EPS can be

evaluated. The original error fields can be approxi-

mately reconstructed from the reduced set of the two

leading PCs and their associated EOF patterns. The

reconstructed error fields can be further decomposed

into cyclone intensity (minimum pressure) and dis-

placement errors. The above decompositions of fore-

cast errors associated with the leading two patterns

are combined and summarized in Figs. 11 and 12 to

provide a physical understanding of the model errors

based on the EOF PC1–PC2 space.

Figure 11 illustrates the minimum pressure error for

each EPS as well as the combined EPSs from day 1 to

day 6 forecasts derived from the leading two EOF PC

errors. Figure 12 depicts the displacement errors for

each EPS associated with the leading two patterns.

For the short range (1–2 days, Figs. 11 and 12a,b), the

ECMWF model shows slightly larger positive in-

tensity errors (cyclones too weak) than the other

models for days 1 and 2. In contrast, the NCEP model

has negative intensity errors than the other models.

The CMC, NAEFS, and the three ensembles com-

bined have the errors between the above two. For

the medium range (3–6 days, Figs. 11 and 12c–f), all

models have positive intensity errors from 2 to 7 hPa,

suggesting an underprediction of the observed East

Coast winter storms. Among them, the CMC forecasts

have the largest intensity errors while the NCEP

forecasts have the smallest errors for days 3–5 and the

ECMWF model has the smallest errors for day 6

forecasts.

Note that during days 1–4 (Figs. 12a–d), the ECMWF

has the largest displacement errors toward the west-

southwest or south-southwest while the NCEP model

has the least errors and is furthest to the north

or northeast among all models. For days 5–6, both

NCEP and CMC are biased toward the east-southeast

of east and have larger error than ECMWF. When

comparing with the other models, the ECMWF mo-

del is always to the west-southwestward direction,

suggesting that when forecasting East Coast winter
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storm, one tendency of the ECMWF model is to

forecast them too west-southwestward than the other

two models. This tendency likely causes larger west-

southwestward displacement errors in the ECMWF

model for days 1–4 than the other two models. This

could be partly due to the slow propagation in the

ECMWF model as suggested by Froude (2010).

When taking the bias into consideration, the error–

spread skills could be changed. Bias correction is not

straightforward here since error–spread is examined in

the PC space instead of physical space. Nevertheless, the

discussions above suggest that the leading EOF patterns

for most cases are similar, and that the models exhibit

significant bias in the PC space. Therefore, we have also

FIG. 9. (a)–(f) The first EOF pattern (shaded) in the multimodel ensemble from day 1 to day 6 forecast. The

purple dot represents the ensemblemean cyclone position averaged over all cases for each lead time. The explained

variance for this pattern (see bottom-left numbers on each panel) increases from 35.9% for day 1 lead time to 56.6%

for day 6 lead.
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recalculated the error–spread ratio after removing the

bias for each EPS. For each case, the mean bias over all

cases for each PC is removed from each EPS after en-

suring that the EOF for that case projects positively on

the dominant EOF pattern for each PC shown in Figs. 9

and 10. Figures 8c and 8d show the bias-corrected error–

spread ratio for each PC. The ratios for all EPSs are

reduced when compared with those calculated with bias.

The skill of each EPS or combined ensemble becomes

stable for PC1 during the medium and extended ranges.

Other results are consistent with the original error–

spread ratio plots (Figs. 8a,b). The bias-corrected ratios

for two time periods are also presented in Figs. S2c and

S2d. Comparations among different EPSs are consistent

with the results from Figs. S2a and S2b, except for that

the increasing trend of underdispersion with lead time

does not hold true for PC1. Here, bias is corrected as a

posteriori, hence guaranteeing a reduction in the error.

FIG. 10. As in Fig. 9, but for EOF2 pattern. The explained variance for this pattern varies from 17.9% to 21.7% (see

bottom-left numbers on each panel).
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In future work it would be of interest to examine

whether a priori bias correction in PC space in the

forecast based on historical bias can also lead to re-

duction in errors.

Note that in calculating the forecast biases (as well as

for the error–spread relation discussed in the previous

subsection), all observed cyclone cases and ensemble

members are included in the calculations, hence we

believe that the evaluations conducted in this study can

provide results that are complementary to those pro-

vided by cyclone matching (e.g., Froude 2010). The

cyclone matching can directly verify forecast errors in

intensity and displacement but can only verify cases

in which many ensemble members can be matched

to the observed cyclone, as well as verifying only

the ensemble members that can be matched, which

represent a decreasing fraction of all cyclone forecasts

as the lead time is increased. However, since only ob-

served cyclone cases were used in this analysis, and not

those cases simulated by some members but not ob-

served, the errors here may not represent the full en-

semble bias.

4. Discussions

a. Utilizing the ensemble mean clusters

In general, the ensemble mean forecast when aver-

aged over many cases is assumed to be closer to the truth

than any of the individual forecasts in an ensemble

(Leith 1974; Murphy 1988; Whitaker and Loughe

1998). As a result, the ensemble mean is most widely

used to represent the best available estimate of the

future state of the atmosphere. Du and Zhou (2011)

proposed an ensemble ranking method based on the

distance between members to ensemble mean under

the assumption of no model bias. However, the dif-

ficulty to use ensemble-mean based method is that

model has bias in reality. If a model has bias, it is

expected that the ensemble mean will not be verified

the best. How model bias impacts ensemble verifica-

tion has been recently investigated by Wang et al.

(2018), who show that an ensemble verification could

be completely misleading with model bias. Therefore,

the ensemble mean is insufficient to be useful guid-

ance for a forecaster when there is a pending severe

winter storm. For example, for the January 2015 case

discussed by Zheng et al. (2017), the ensemble mean

had the cyclone closer to the U.S. East Coast while a

subset of ensemble members suggested a cyclone

more to the northeast. If the forecaster relied too

heavily on the ensemble mean and ignored the other

scenarios a wrong forecast could be made. Therefore,

a verification of the ensemble mean is necessary

to investigate whether the ensemble mean is really

better than other subsets of an ensemble. Scenar-

ios based on PC1–PC2 phase space provide a new

perspective to verify the ensemble mean. Since the

analysis group is a representation of the analysis

scenario while the ensemble mean group (Group EM)

is often a representation of the ensemble mean sce-

nario, it is straightforward to verify whether the en-

semble mean group is similar to the analysis group. If

the ensemble mean group includes the analysis sce-

nario more often than the other scenario groups, it

will suggest that the ensemble mean does have a

better skill than the other subsets of the ensemble in

terms of the capability of including real development

scenarios.

Figure 13a shows the fraction of cases in which the

ensemble mean group is the same as the analysis group.

For short-range forecast (1–2 days), the ensemble mean

group does include the analysis scenario more often

(;40%) than the expected average chance (20%) of

each group. This indicates that the ensemble mean sce-

nario is more reliable than the other ensemble groups.

However, beyond day 2, the percentage is only slightly

higher than the expected percentage in the medium

range (days 3–6) and even less than the expected av-

erage in the extended range. This suggests that the en-

semble mean group has no advantage when compared

with the other groups for the medium and extended

range forecasts. Even in the short-range forecast, there

are still around 60% of cases with the analysis group

being different from the ensemble mean group. There-

fore, focusing on the ensemble mean too much could be

misleading in most cases given model biases.

FIG. 11. Mean minimum pressure error (hPa) of each EPS and

the combined model for PC1 and PC2 errors from day 1 to day 6

forecast.
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FIG. 12. The displacement errors corresponding to the combined PC1 and PC2 errors for each EPS as well as

the combined models for (a)–(f) day 1 to day 6 forecast. The radius has unit of kilometers. Note that (f) has a

radius of 250 km instead of 150 km.
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In operational forecasting, the individual model

means are also used a lot, especially the ECMWF

mean. Previous studies suggested that the ECMWF

model is the ‘‘best’’ global ensemble model (e.g.,

Buizza et al. 2005; Keller et al. 2011). Operational fore-

casters have the tendency to hedge toward the ECMWF

forecast direction when the forecast uncertainties are

large. Figure 13a has shown that in the medium range the

analysis scenario is not more likely to be in the Group

EM. Here, we examine how often the analysis tends to

be in the direction of individual model means on the

PC1–PC2 space.We investigate this question by examining

whether the projection of the analysis on the PC1–PC2

space is in the same quadrant as the different EPS

means. Figure 13b shows the percentage of cases in

which the analysis falls within the same quadrant as each

EPS mean at each lead time. The percentage that the

analysis is located outside of any of the EPS mean

quadrants is also shown for comparison. Since there are

four quadrants, if everything is random, each EPS

mean should have a probability of 1/4 (25%) of being

within the same quadrant as the analysis. As can be

seen from Fig. 13, the ECMWF model does show

higher chance during the medium range to be in the

analysis quadrant. However, even the highest per-

centage (for day 5) is ;35%. The NCEP and NAEFS

show slightly higher chance for days 1–2 and day 9 to be

in the analysis quadrant. One thing worth noting is that

there are a moderate number (;20%–30%) of cases in

which the analysis lies in a quadrant in which none of

the three EPS means fall. The quadrant statistics in

Fig. 13b suggest that although the ECMWF ensemble

shows a slightly higher chance to be in the quadrant in

which the analysis falls for the medium range, it also

misses the analysis cluster in around two-thirds of the

cases. These results have practical implications in op-

erational forecasting, suggesting that it is not a good

practice for forecasters to hedge toward the ECMWF

ensemble mean solution, even though the ECMWF

might be the best ensemble. Note that in cases of high-

amplitude, relatively small-scale features, such as a

strong east coast cyclone, taking the ensemble mean

will result in a smoother, larger, and weaker system

than any of themembers individually because of spatial

differences in cyclone center among the members.

Thus, the ensemble mean may reduce overall RMSE

compared to individual members (e.g., Du and Zhou

2011), but the storm structure could also be changed or

distorted. Results shown in this subsection indicate that

all scenarios must be taken into consideration in the

formulation of a forecast and the model bias needs to

be corrected first before an ensemble is used to produce

forecast products.

b. Sensitivity to number of clusters and fuzziness
information

The fuzzy clustering algorithm is often considered

sensitive to the choice of cluster numbers as well as the

fuzziness parameters. In this work, we have used a fixed

number 5 for the clustering process. However, we have

tested the results for two- to eight-cluster solutions

using 100 random seedings for each case. The adjusted

Rand index (ARI; Yeung and Ruzzo 2001), which

measures pairwise cluster partition agreement based

on the contingency tables, is used to validate the

FIG. 13. (a) The fraction of cases (red line with dot) with the

Group EM same with Group ANA for all cases at each lead time.

For the five-cluster solution, each group is supposed to have 20%

(black dotted line) chance (average chance) to be similar with the

Group ANA. The cyan and magenta solid lines represent 50% less

and 50% more chance than the average chance to include analysis

group, respectively. (b) The fraction of cases in which the analysis

falls into the same quadrant as NCEP, CMC, ECMWF, and NAEF

means, as well as in a quadrant in which none of the three EPS

means are in, which is defined as ‘‘none’’ in the legend.
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consistency among the random runs. A larger ARI

means a higher agreement between two partitions. We

have found that five-cluster solutions tend to be the

most stable solution for most cases with the highest

ARI. In addition, the second ARI, six-cluster solutions,

has shown consistent statistics with the five-cluster so-

lutions. Therefore, we consider the choice of using five

clusters to be representative of the reasonable group-

ings in most cases.

Another issue during the clustering process is the

fuzziness features of each cluster. In this applica-

tion, we assign a member to one unique cluster, thus

ignoring the fuzziness possibility of groupings. In

other words, if a member is located in the boundary

regions of two clusters, we still assign it to a slightly

closer cluster. To investigate if the fuzziness could

impact our results, we have examined the impact of

adding a threshold to define if a member is signifi-

cantly assigned to a cluster. The threshold is the

difference between the mean of the membership

weights of all members within a cluster minus the

standard deviation of the weight. A confident member

in a cluster has the membership weight greater than

the threshold. Otherwise, the member is not assigned

to any cluster. The significant cases (or confident

cases) are selected when the weights of the analysis for

the analysis group is higher than the mean minus one

standard deviation of all members’ strongest weights

within a cluster. A total of 54 and 72 cases were chosen

for day 3 and day 6, respectively.

Figure 14 compares the previous scenario statistics

shown in Fig. 7a with all cluster members and with the

confident members only for day 3 and day 6. For day 3

forecast, the ECMWF and NCEP models are com-

parable in capturing the analysis scenario when only

the confident members are used for calculations,

which is consistent with the results using all members

in the analysis group. The CMC model again shows

the lowest percentage in the three models in analysis

group. For day 6, the percentage of ECMWFmembers

in analysis group is significantly higher than the

other two models, which is also consistent with the

results using all members. Thus, the results for anal-

ysis members with and without insignificant members

mentioned above are consistent, suggesting that the

overall results in this study are not sensitive to the

choice of the fuzziness parameter.

5. Summary

A scenario-based ensemble verification method is

applied to examine the capability of different EPSs in

capturing the analysis scenarios for 158–185 historical

East Coast cyclone cases at lead times of 1–9 days. The

scenario separation uses the PCs of the two leading

EOFs computed from a set of ensemble forecasts as a

base. Fuzzy clustering is then performed to separate

the ensemble into a fixed number of 5 clusters. By

projecting the analysis onto the PC coordinates, the

analysis group is found by searching for the closest

cluster.

The OOE cases are defined by the analysis falling

outside the boundary occupied by the ensemble

members in the PC phase space. We find that there are

less than 3% of OOE cases for short-range forecasts

(days 1–3), 5%–8% for medium range (days 4–7), and

8%–14% for extended range (days 8–9). The OOE

fraction increases with the leading time from the

medium to the extended range, possibly indicat-

ing increasing underdispersion of the multimodel

ensemble.

With the OOE cases excluded, we have computed the

performance of the three models regarding hit rate

and miss rate for the analysis scenarios. The NCEP

ensemble members have the highest probability to be

included in the analysis group for the short-range

forecasts; however, this ensemble also has the highest

miss rate. The ECMWF ensemble shows the best

performance in the medium range with the highest

percentage contributing to the analysis group and

the lowest missing rate among the three EPSs, sug-

gesting its superiority in medium-range forecasts of

East Coast storms. The CMC model overall shows the

smallest percentage of members contributing to the

FIG. 14. As in Fig. 7a, but for significant cases of 3- and 6-day

forecasts when the analysis falls clearly within the analysis group.

The dark green square, magenta circle, and cyan triangle (end with

_conf in legend) are for NCEP, CMC, and ECMWF models in

significant cases while the green, red, and blue markers are the

same with Fig. 7a for the purpose of comparisons.
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analysis group and a relatively higher miss rate, sug-

gesting that it is less reliable in capturing the analysis

scenario. However, it has lower miss rate than the

NCEP model in the short range. The combination of

the CMC and NCEP models can reduce the miss rate

significantly, demonstrating the value of combining

the two models, which is consistent with the conclu-

sion of Zhou and Du (2010).

The ensemble mean of a multimodel or individual

models (in particular the ECMWFmodel) is widely used

by operational forecasters to represent the best avail-

able estimate of the future state of the atmosphere. It

was found that in the majority of cases (.60%), the

analysis is not within the ensemble mean group for the

multimodel ensemble. Meanwhile, the quadrant statis-

tics suggest that the ECMWF model misses the analysis

direction in a majority of past storms due to model bias

although it shows a slightly higher chance to be in the

analysis quadrant in the medium range than the other

two EPSs.

To measure the quality of the ensemble, we have

calculated the error-spread ratio using EOF PCmetrics.

TheNCEPmodel is severely underdispersed in the short

range for both PC metrics, suggesting the NCEP model

may not have enough dispersion. Considering its higher

percentage of members contributing to the analysis

scenario, we conclude that the NCEP model has less

forecast errors but a narrow ensemble spread in the

short range. In contrast, the CMC model is the least

underdispersed on day 1. Since the CMC model has a

lower chance to be included in the analysis group, this

model seems to have large forecast errors but also a

broad ensemble at short range. The ECMWF model

has better error-spread relationship during the me-

dium range, demonstrating its superior performance

in the medium range. On the other hand, the multi-

model (NCEP 1 CMC 1 ECMWF) and the NAEFS

ensemble shows less underdispersion in short- and

medium-range forecasts than any individual model

does, suggesting the benefit of combining different

EPSs to provide more forecast variability in the me-

dium and extended range.

The model uncertainty and biases for 1–6-day fore-

casts have been decomposed for the leading two EOF

patterns of MSLP forecasts. The results show that for all

lead times, the first EOF pattern is associated with the

intensity uncertainty for themultimodel ensemble for all

lead times, while the second pattern is associated with

cyclone position uncertainty along either the west–east

or southwest–northeast direction. The NCEP model

tends to better represent the leading two EOF patterns

by showing less intensity and displacement biases during

1–4 days. The ECMWFmodel has the smallest biases in

both patterns during 5–6 days. The CMC model shows

moderate biases for days 1–2 and the largest biases for

days 3–6. We have also found that the East Coast cy-

clone in the ECMWF forecast, which is often considered

as ‘‘best’’ among global EPSs, tend to be toward the

southwest of the other two models in representing the

leading two patterns, which suggests that the ECMWF

model may have a tendency to show a closer-to-shore

solution in forecasting East Coast winter storms. The

error-spread skill problem is revisited after removing

the model bias for each PC. The underdispersion is

significantly smaller in the medium and extended range

for PC1 and the increasing trend with lead time does not

hold true. Otherwise, the comparisons among different

EPSs are consistent with the results calculated with

the model bias included.

Note that all the calculations in this work are based

on the orthogonal EOF patterns. We are aware of the

reduced information when only using the leading two

EOF patterns. However, this work provides a com-

plementary and novel way to verify ensemble outputs

in forecasting East Coast storms compared to existing

verifications based on cyclone matching. Scenario-

based verification could be more efficient and intui-

tive than the traditional matching methods. One

future direction is to apply advanced machine learn-

ing methods (e.g., the convolutional neural networks;

Längkvist et al. 2016) to separate clusters and verify

them with analyses.
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